Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 8(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285887

RESUMO

BACKGROUND: As the variable clinical outcome of patients with hepatoblastoma (HB) cannot be explained by genetics alone, the identification of drugs with the potential to effectively reverse epigenetic alterations is a promising approach to overcome poor therapy response. The gene ubiquitin like with PHD and ring finger domains 1 (UHRF1) represents an encouraging epigenetic target due to its regulatory function in both DNA methylation and histone modifications and its clinical relevance in HB. METHODS: Patient-derived xenograft in vitro and in vivo models were used to study drug response. The mechanistic basis of CM-272 treatment was elucidated using RNA sequencing and western blot experiments. RESULTS: We validated in comprehensive data sets that UHRF1 is highly expressed in HB and associated with poor outcomes. The simultaneous pharmacological targeting of UHRF1-dependent DNA methylation and histone H3 methylation by the dual inhibitor CM-272 identified a selective impact on HB patient-derived xenograft cell viability while leaving healthy fibroblasts unaffected. RNA sequencing revealed downregulation of the IGF2-activated survival pathway as the main mode of action of CM-272 treatment, subsequently leading to loss of proliferation, hindered colony formation capability, reduced spheroid growth, decreased migration potential, and ultimately, induction of apoptosis in HB cells. Importantly, drug response depended on the level of IGF2 expression, and combination assays showed a strong synergistic effect of CM-272 with cisplatin. Preclinical testing of CM-272 in a transplanted patient-derived xenograft model proved its efficacy but also uncovered side effects presumably caused by its strong antitumor effect in IGF2-driven tumors. CONCLUSIONS: The inhibition of UHRF1-associated epigenetic traces, such as IGF2-mediated survival, is an attractive approach to treat high-risk HB, especially when combined with the standard-of-care therapeutic cisplatin.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cisplatino/farmacologia , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Ubiquitina-Proteína Ligases/genética , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/antagonistas & inibidores
2.
Sci Rep ; 10(1): 9943, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546710

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 10(1): 5971, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249801

RESUMO

Evidence suggests that the CXXC type zinc finger (ZF-CXXC) protein 5 (CXXC5) is a critical regulator/integrator of various signaling pathways that include the estrogen (E2)-estrogen receptor α (ERα). Due to its ZF-CXXC domain, CXXC5 is considered to be a member of the ZF-CXXC family, which binds to unmethylated CpG dinucleotides of DNA and through enzymatic activities for DNA methylation and/or chromatin modifications generates a chromatin state critical for gene expressions. Structural/functional features of CXXC5 remain largely unknown. CXXC5, suggested as transcription and/or epigenetic factor, participates in cellular proliferation, differentiation, and death. To explore the role of CXXC5 in E2-ERα mediated cellular events, we verified by generating a recombinant protein that CXXC5 is indeed an unmethylated CpG binder. We uncovered that CXXC5, although lacks a transcription activation/repression function, participates in E2-driven cellular proliferation by modulating the expression of distinct and mutual genes also regulated by E2. Furthermore, we found that the overexpression of CXXC5, which correlates with mRNA and protein levels of ERα, associates with poor prognosis in ER-positive breast cancer patients. Thus, CXXC5 as an unmethylated CpG binder contributes to E2-mediated gene expressions that result in the regulation of cellular proliferation and may contribute to ER-positive breast cancer progression.


Assuntos
Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
4.
Front Biosci (Landmark Ed) ; 24(2): 245-276, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468654

RESUMO

17beta-estradiol (E2), the main circulating estrogen hormone, is involved in a wide variety of physiological functions ranging from the development to the maintenance of many tissues and organs. The effects of E2 on cells are primarily conveyed by the transcription factors, estrogen receptor (ER) alpha and beta. The regulation of responsive genes by the well-defined ER alpha in response to E2 relies on complex and highly organized processes that dynamically integrate functions of many transcription regulators to induce spatiotemporal alterations in chromatin state and structure. Changes in gene expressions result in cell-specific responses that include proliferation, differentiation and death. Deregulation of E2-ER alpha signaling contributes to the initiation and progression of target tissue malignancies. We aim here to provide a review of recent findings on dynamic transcriptional events mediated by E2-ER alpha with the anticipation that a better understanding of complex regulatory mechanisms underlying ER actions would be a critical basis for the development of effective prognostic tools for and therapeutic interventions against estrogen target tissue malignancies.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Elementos de Resposta/genética , Transcrição Gênica/efeitos dos fármacos , Animais , Sítios de Ligação/genética , Estradiol/sangue , Receptor alfa de Estrogênio/química , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...